Jathusan Photography
Sunday, April 24, 2011
எனது செல்லப் பிராணியான ரொமியின் மரணம்
எனது செல்லப் பிராணியான ரொமியின் ( TOMMI ) மரணம் என்னால் ஏற்க்கமுடியாத இறப்பு
அதனது சின்னச் சின்ன குறும்புகள் விளையாட்டுக்கள் எல்லாவற்றையும் ஓருநாளும் மறக்கா வண்ணம் மனதில் கோவில் கொண்டுள்ளது...........................
Monday, April 11, 2011
ANIMAL TISSUE...@
Examples of tissue in other multicellular organisms are vascular tissue in plants, such as xylem and phloem. Plant tissues are categorized broadly into three tissue systems: the epidermis, the ground tissue, and the vascular tissue. Together they are often referred to as biomass.
Epidermis - Cells forming the outer surface of the leaves and of the young plant body.
Vascular tissue - The primary components of vascular tissue are the xylem and phloem. These transport fluid and nutrients internally.
Ground tissue - Ground tissue is less differentiated than other tissues. Ground tissue manufactures nutrients by photosynthesis and stores reserve nutrients.
Plant tissues can also be divided differently into two types:
Meristematic tissues
Permanent tissues
[edit]Meristematic tissues
Meristematic tissue consist of actively dividing cells this is found in regions such as the tips of stems or roots and lead to increase in length and thickness of the plant this cells are spherical oval polygonal and rectangular and have thin cells walls.The growth of plant occurs only in certain specific regions. At these regions, the meristematic tissues are present. New cells produced by meristem are initially those of meristem itself, but as they grow and mature, their characteristics slowly change and they become differentiated as components of other tissues. Depending on the region of occurrence of meristimatic tissues they are classified as:
a) Apical Meristem - It is present at the growing tips of stems and roots and increases the length of the stem and root. They form growing parts at the apices of roots and stems and are responsible for increase in length,also called primary growth.This meristem is responsible for the linear growth of an organ.
b) Lateral Meristem - This meristem consist of cells which mainly divide in one plane and cause the organ to increase in diameter and growth. Lateral Meristem usually occurs beneath the bark of the tree in the form of Cork Cambium and in vascular bundles of dicots in the form of vascular cambium. The activity of this cambium results in the formation of secondary growth.
c) Intercalary Meristem - This meristem is located in between permanent tissues. It is usually present at the base of node, inter node and on leaf base. They are responsible for growth in length of the plant.This adds growth in the girth of stem.
The cells of meristematic tissues are similar in structure and have thin and elastic primary cell wall made up of cellulose. They are compactly arranged without inter-cellular spaces between them. Each cell contains a dense cytoplasm and a prominent nucleus. Dense protoplasm of meristematic cells contains very few vacuoles. Normally the meristematic cells are oval, polygonal or rectangular in shape.
Meristemetic tissue cells have a large nucleus with small or no vacuoles, they have no inter cellular spaces.
[edit]Permanent tissues
The meristematic tissues that take up a specific role lose the ability to divide. This process of taking up a permanent shape, size and a function is called cellular differentiation. Cells of meristematic tissue differentiate to form different types of permanent tissue. There are 2 types of permanent tissues:
1. simple permanent tissues
2. complex permanent tissues
[edit]Simple permanent tissues
These tissues are called simple because they are composed of similar types of cells which have common origin and function. They are further classified into:
Parenchyma
Chlorenchyma
Aerenchyma
Collenchyma
Sclerenchyma
Epidermis
[edit]Parenchyma
Parenchyma is Greek word where "parn" means besides and "enchien" means to pour. Parenchyma is the most specialized primitive tissue. It mainly consist of thin-walled cells which have inter-cellular spaces between them. The cell wall is made up of cellulose. Each parenchymatous cell is iso-diametric, spherical, or oval in shape. It is widely distributed in various plant organs like root, stem, leaf, flowers and fruits. They mainly occur in the cortex epidermis, and pith, as well as in the mesophyll of leaves.
The main function of parenchymatous tissue is assimilation and storage of reserve food materials like starch, fats and proteins. They also store waste products such as gums, resins, and inorganic waste materials.
[edit]Chlorenchyma
The cells of this tissue are characterized by having chloroplasts (containing chlorophyll). It is found in the palisade and spongy tissues in the green leaves and the stem cortex of the herbs where photosynthesis occurs.
[edit]Aerenchyma
Aerenchyma is a type of parenchyma. In aquatic plants the intercellular spaces form large air cavities. They give buoyancy to the plant and help them float in water. Such parenchyma is called aerenchyma.
[edit]Collenchyma
Cross section of collenchyma cells
Collenchyma is Greek word where "Collen" means gum and "enchyma" means infusion. It is a living tissue of primary body like Parenchyma. Cells are thin-walled but possess thickening of cellulose and pectin substances at the corners where number of cells join together. This tissue gives a tensile strength to the plant and the cells are compactly arranged and do not have inter-cellular spaces. It occurs chiefly in hypodermis of stems and leaves. It is absent in monocots and in roots.
Collenchymatous tissue acts as a supporting tissue in stems of young plants. It provides mechanical support, elasticity, and tensile strength to the plant body. It helps in manufacturing sugar and storing it as starch. It is present in margin of leaves and resist tearing effect of the wind.
[edit]Sclerenchyma
Sclerenchyma is Greek word where "Sclrenes" means hard and "enchyma" means infusion. This tissue consists of thick-walled, dead cells. These cells have hard and extremely thick secondary walls due to uniform distribution of lignin. Lignin deposition is so thick that the cell walls become strong, rigid and impermeable to water. Sclerenchymatous cells are closely packed without inter-cellular spaces between them. Thus, they appear as hexagonal net in transverse section. The cells are cemented with the help of lamella. The middle lamella is a wall that lies between adjacent cells. Sclerenchymatous cells mainly occur in hypodermis, pericycle, secondary xylem and phloem. They also occur in endocorp of almond and coconut. It is made of pectin, lignin, protein. The cells of sclerenchymatous cells can be classified as :
Fibres- Fibres are long, elongated sclerenchymatous cells with pointed ends.
Sclerides- Sclerenchymatous cells which are short and possess extremely thick, lamellated, lignified walls with long singular piths. They are called sclerides.
The main function of Sclerenchymatous tissues is to give support to the plant.
[edit]Epidermis
The entire surface of the plant consists of a single layer of cells called epidermis or surface tissue. The entire surface of the plant has this outer layer of epidermis. Hence it is also called surface tissue. Most of the epidermal cells are relatively flat. the outer and lateral walls of the cell are often thicker than the inner walls. The cells forms a continuous sheet without inter cellular spaces. It protects all parts of the plant.
[edit]Complex permanent tissue
A complex permanent tissue may be classified as a group of more than one type of tissue having a common origin and working together as a unit to perform a function. These tissues are concerned with transportation of water, mineral, nutrients and organic substances. The important complex tissues in vascular plants are xylem, phloem.
[edit]Xylem
Xylem is a chief, conducting tissue of vascular plants. It is responsible for conduction of water and mineral ions.
Xylem is an important plant tissue as it is part of the ‘plumbing’ of a plant. Think of bundles of pipes running along the main axis of stems and roots. It carries water and dissolved substances throughout and consists of a combination of parenchyma cells, fibers, vessels, tracheids and ray cells. Long tubes made up of individual cells are the vessels, while vessel members are open at each end. Internally, there may be bars of wall material extending across the open space. These cells are joined end to end to form long tubes. Vessel members and tracheids are dead at maturity. Tracheids have thick secondary cell walls and are tapered at the ends. They do not have end openings such as the vessels. The tracheids ends overlap with each other, with pairs of pits present. The pit pairs allow water to pass from cell to cell. While most conduction in the xylem is up and down, there is some side-to-side or lateral conduction via rays. Rays are horizontal rows of long-living parenchyma cells that arise out of the vascular cambium. In trees, and other woody plants, ray will radiate out from the center of stems and roots and in cross-section will look like the spokes of a wheel.
[edit]Phloem
Phloem is an equally important plant tissue as it also is part of the ‘plumbing’ of a plant. Primarily, phloem carries dissolved food substances throughout the plant. This conduction system is composed of sieve-tube member and companion cells, that are without secondary walls. The parent cells of the vascular cambium produce both xylem and phloem. This usually also includes fibers, parenchyma and ray cells. Sieve tubes are formed from sieve-tube members laid end to end. The end walls, unlike vessel members in xylem, do not have openings. The end walls, however, are full of small pores where cytoplasm extends from cell to cell. These porous connections are called sieve plates. In spite of the fact that their cytoplasm is actively involved in the conduction of food materials, sieve-tube members do not have nuclei at maturity. It is the companion cells that are nestled between sieve-tube members that function in some manner bringing about the conduction of food. Sieve-tube members that are alive contain a polymer called callose. Callose stays in solution as long at the cell contents are under pressure. As a repair mechanism, if an insect injures a cell and the pressure drops, the callose will precipitate. However, the callose and a phloem protein will be moved through the nearest sieve plate where they will form a plug. This prevents further leakage of sieve tube contents and the injury is not necessarily fatal to overall plant turgor pressure. Phloem transports food and materials in plants in upwards and downwards as required.
ANIMAL TISSUE...@
Animal tissues can be grouped into four basic types: connective, muscle, nervous, and epithelial. Multiple tissue types comprise organs and body structures. While all animals can generally be considered to contain the four tissue types, the manifestation of these tissues can differ depending on the type of organism. For example, the origin of the cells comprising a particular tissue type may differ developmentally for different classifications of animals. The epithelium in all animals is derived from the ectoderm and endoderm with a small contribution from the mesoderm which forms the endothelium. By contrast, a true epithelial tissue is present only in a single layer of cells held together via occluding junctions called tight junctions, to create a selectively permeable barrier. This tissue covers all organismal surfaces that come in contact with the external environment such as the skin, the airways, and the digestive tract. It serves functions of protection, secretion, and absorption, and is separated from other tissues below by a basal lamina. Endothelium, which comprises the vasculature, is a specialized type of epithelium.
[edit]Connective tissue
Connective tissues are fibrous tissues. They are made up of cells separated by non-living material, which is called extracellular matrix. Connective tissue gives shape to organs and holds them in place. Both blood and bone are examples of connective tissue.
[edit]Muscle tissue
Muscle cells form the active contractile tissue of the body known as muscle tissue. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle tissue is separated into three distinct categories: visceral or smooth muscle, which is found in the inner linings of organs; skeletal muscle, in which is found attached to bone providing for gross movement; and cardiac muscle which is found in the heart, allowing it to contract and pump blood throughout an organism.
[edit]Nervous tissue
Cells comprising the central nervous system and peripheral nervous system are classified as neural tissue. In the central nervous system, neural tissue forms the brain and spinal cord and, in the peripheral nervous system forms the cranial nerves and spinal nerves, inclusive of the motor neurons. Transmits communications.
[edit]Epithelial tissue
The epithelial tissues are formed by cells that cover organ surfaces such as the surface of the skin, the airways, the reproductive tract, and the inner lining of the digestive tract. The cells comprising an epithelial layer are linked via semi-permeable, tight junctions; hence, this tissue provides a barrier between the external environment and the organ it covers. In addition to this protective function, epithelial tissue may also be specialized to function in secretion and absorption. Epithelial tissue helps to protect organisms from microorganisms, injury, and fluid loss.
[edit]
chemistry calculation
Percent Composition by Mass (%)
This is the mass of the solute divided by the mass of the solution (mass of solute plus mass of solvent), multiplied by 100.
Example:
Determine the percent composition by mass of a 100 g salt solution which contains 20 g salt.
Solution:
20 g NaCl / 100 g solution x 100 = 20% NaCl solution
Volume Percent (% v/v)
Volume percent or volume/volume percent most often is used when preparing solutions of liquids. Volume percent is defined as:
v/v % = [(volume of solute)/(volume of solution)] x 100%
Note that volume percent is relative to volume of solution, not volume of solvent. For example, wine is about 12% v/v ethanol. This means there are 12 ml ethanol for every 100 ml of wine. It is important to realize liqud and gas volumes are not necessarily additive. If you mix 12 ml of ethanol and 100 ml of wine, you will get less than 112 ml of solution.
As another example. 70% v/v rubbing alcohol may be prepared by taking 700 ml of isopropyl alcohol and adding sufficient water to obtain 1000 ml of solution (which will not be 300 ml).
Mole Fraction (X)
This is the number of moles of a compound divided by the total number of moles of all chemical species in the solution. Keep in mind, the sum of all mole fractions in a solution always equals 1.
Example:
What are the mole fractions of the components of the solution formed when 92 g glycerol is mixed with 90 g water? (molecular weight water = 18; molecular weight of glycerol = 92)
Solution:
90 g water = 90 g x 1 mol / 18 g = 5 mol water
92 g glycerol = 92 g x 1 mol / 92 g = 1 mol glycerol
total mol = 5 + 1 = 6 mol
xwater = 5 mol / 6 mol = 0.833
x glycerol = 1 mol / 6 mol = 0.167
It's a good idea to check your math by making sure the mole fractions add up to 1:
xwater + xglycerol = .833 + 0.167 = 1.000
Molarity (M)
Molarity is probably the most commonly used unit of concentration. It is the number of moles of solute per liter of solution (not necessarily the same as the volume of solvent!).
Example:
What is the molarity of a solution made when water is added to 11 g CaCl2 to make 100 mL of solution?
Solution:
11 g CaCl2 / (110 g CaCl2 / mol CaCl2) = 0.10 mol CaCl2
100 mL x 1 L / 1000 mL = 0.10 L
molarity = 0.10 mol / 0.10 L
molarity = 1.0 M
Molality (m)
Molality is the number of moles of solute per kilogram of solvent. Because the density of water at 25°C is about 1 kilogram per liter, molality is approximately equal to molarity for dilute aqueous solutions at this temperature. This is a useful approximation, but remember that it is only an approximation and doesn't apply when the solution is at a different temperature, isn't dilute, or uses a solvent other than water.
Example:
What is the molality of a solution of 10 g NaOH in 500 g water?
Solution:
10 g NaOH / (4 g NaOH / 1 mol NaOH) = 0.25 mol NaOH
500 g water x 1 kg / 1000 g = 0.50 kg water
molality = 0.25 mol / 0.50 kg
molality = 0.05 M / kg
molality = 0.50 m
Normality (N)
Normality is equal to the gram equivalent weight of a solute per liter of solution. A gram equivalent weight or equivalent is a measure of the reactive capcity of a given molecule. Normality is the only concentration unit that is reaction dependent.
Example:
1 M sulfuric acid (H2SO4) is 2 N for acid-base reactions because each mole of sulfuric acid provides 2 moles of H+ ions. On the other hand, 1 M sulfuric acid is 1 N for sulfate precipitation, since 1 mole of sulfuric acid provides 1 mole of sulfate ions.
Dilutions
You dilute a solution whenever you add solvent to a solution. Adding solvent results in a solution of lower concentration. You can calculate the concentration of a solution following a dilution by applying this equation:
MiVi = MfVf
where M is molarity, V is volume, and the subscripts i and f refer to the initial and final values.
Example:
How many millilieters of 5.5 M NaOH are needed to prepare 300 mL of 1.2 M NaOH?
Solution:
5.5 M x V1 = 1.2 M x 0.3 L
V1 = 1.2 M x 0.3 L / 5.5 M
V1 = 0.065 L
V1 = 65 mL
So, to prepare the 1.2 M NaOH solution, you pour 65 mL of 5.5 M NaOH into your container and add water to get 300 mL final volume.
Sunday, April 10, 2011
CHEMISTRY......@
Chemistry (the etymology of the word has been much disputed[1]) is the science of matter and the changes it undergoes. The science of matter is also addressed by physics, but while physics takes a more general and fundamental approach, chemistry is more specialized, being concerned with the composition, behavior (or reaction), structure, and properties of matter, as well as the changes it undergoes during chemical reactions.[2] It is a physical science which studies various substances, atoms, molecules, crystals and other aggregates of matter whether in isolation or combination, and which incorporates the concepts of energy and entropy in relation to the spontaneity of chemical processes.
Disciplines within chemistry are traditionally grouped by the type of matter being studied or the kind of study. These include inorganic chemistry, the study of inorganic matter; organic chemistry, the study of organic (carbon based) matter; biochemistry, the study of substances found in biological organisms; physical chemistry, the study of chemical processes using physical concepts such as thermodynamics and quantum mechanics; and analytical chemistry, the analysis of material samples to gain an understanding of their chemical composition and structure. Many more specialized disciplines have emerged in recent years, e.g. neurochemistry the chemical study of the nervous system (see subdisciplines).
Saturday, April 9, 2011
KALUWANCHIKUDY 2011 FLOOD PHOTO'S
Friday, April 8, 2011
NATURAL PHOTO'S ( MY CAMERA SNAPSHOT )
MY PHOTOS........
>
இது எனது புதிய ........................PHOTOS.............................BlogThis!Share to XShare to FacebookShare to Pinterest
Subscribe to:
Posts (Atom)